Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 146(13)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142545

RESUMO

The niche controls stem cell self-renewal and differentiation in animal tissues. Although the exocyst is known to be important for protein membrane trafficking and secretion, its role in stem cells and niches has never been reported. Here, this study shows that the exocyst functions in the niche to promote germline stem cell (GSC) progeny differentiation in the Drosophila ovary by directly regulating EGFR membrane trafficking and signaling. Inactivation of exocyst components in inner germarial sheath cells, which form the differentiation niche, causes a severe GSC differentiation defect. The exocyst is required for maintaining niche cells and preventing BMP signaling in GSC progeny by promoting EGFR membrane targeting and signaling through direct association with EGFR. Finally, it is also required for EGFR membrane targeting, recycling and signaling in human cells. Therefore, this study reveals a novel function of the exocyst in niche cells to promote stem cell progeny differentiation by directly controlling EGFR membrane trafficking and signaling in vivo, and also provides important insight into how the niche controls stem cell progeny differentiation at the molecular level.


Assuntos
Diferenciação Celular , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Células Germinativas/citologia , Receptores de Peptídeos de Invertebrados/metabolismo , Nicho de Células-Tronco , Células-Tronco/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Membrana Celular/metabolismo , Autorrenovação Celular/genética , Células Cultivadas , Drosophila , Proteínas de Drosophila/fisiologia , Receptores ErbB/fisiologia , Feminino , Proteínas de Ligação ao GTP/fisiologia , Células Germinativas/metabolismo , Células HEK293 , Células HeLa , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/fisiologia , Ovário/citologia , Ovário/metabolismo , Transporte Proteico/genética , Receptores de Peptídeos de Invertebrados/fisiologia , Nicho de Células-Tronco/genética , Células-Tronco/citologia , Proteínas de Transporte Vesicular/genética
2.
PLoS Genet ; 14(8): e1007459, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30110323

RESUMO

Neuropeptide signaling influences animal behavior by modulating neuronal activity and thus altering circuit dynamics. Insect flight is a key innate behavior that very likely requires robust neuromodulation. Cellular and molecular components that help modulate flight behavior are therefore of interest and require investigation. In a genetic RNAi screen for G-protein coupled receptors that regulate flight bout durations, we earlier identified several receptors, including the receptor for the neuropeptide FMRFa (FMRFaR). To further investigate modulation of insect flight by FMRFa we generated CRISPR-Cas9 mutants in the gene encoding the Drosophila FMRFaR. The mutants exhibit significant flight deficits with a focus in dopaminergic cells. Expression of a receptor specific RNAi in adult central dopaminergic neurons resulted in progressive loss of sustained flight. Further, genetic and cellular assays demonstrated that FMRFaR stimulates intracellular calcium signaling through the IP3R and helps maintain neuronal excitability in a subset of dopaminergic neurons for positive modulation of flight bout durations.


Assuntos
Sinalização do Cálcio , Neurônios Dopaminérgicos/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Voo Animal/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Animais , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Masculino , Receptores de Peptídeos de Invertebrados/genética
3.
PLoS Genet ; 14(8): e1007568, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30142157

RESUMO

We characterized the establishment of an Epidermal Growth Factor Receptor (EGFR) organizing center (EOC) during leg development in Drosophila melanogaster. Initial EGFR activation occurs in the center of leg discs by expression of the EGFR ligand Vn and the EGFR ligand-processing protease Rho, each through single enhancers, vnE and rhoE, that integrate inputs from Wg, Dpp, Dll and Sp1. Deletion of vnE and rhoE eliminates vn and rho expression in the center of the leg imaginal discs, respectively. Animals with deletions of both vnE and rhoE (but not individually) show distal but not medial leg truncations, suggesting that the distal source of EGFR ligands acts at short-range to only specify distal-most fates, and that multiple additional 'ring' enhancers are responsible for medial fates. Further, based on the cis-regulatory logic of vnE and rhoE we identified many additional leg enhancers, suggesting that this logic is broadly used by many genes during Drosophila limb development.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Receptores ErbB/fisiologia , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Peptídeos de Invertebrados/fisiologia , Alelos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Receptores ErbB/genética , Deleção de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Discos Imaginais/fisiologia , Neurregulinas/genética , Neurregulinas/fisiologia , Organizadores Embrionários , Receptores de Peptídeos de Invertebrados/genética , Transdução de Sinais , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/fisiologia , Proteína Wnt1/genética , Proteína Wnt1/fisiologia
4.
Insect Biochem Mol Biol ; 43(8): 627-34, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23648830

RESUMO

Many insects have evolved resistance to abamectin but the mechanisms involved in this resistance have not been well characterized. P-glycoprotein (P-gp), an ATP-dependent drug-efflux pump transmembrane protein, may be involved in abamectin resistance. We investigated the role of P-gp in abamectin (ABM) resistance in Drosophila using an ABM-resistant strain developed in the laboratory. A toxicity assay, Western blotting analysis and a vanadate-sensitive ATPase activity assay all demonstrated the existence of a direct relationship between P-gp expression and ABM resistance in these flies. Our observations indicate that P-gp levels in flies' heads were higher than in their thorax and abdomen, and that both P-gp levels and LC(50) values were higher in resistant than in susceptible and P-gp-deficient strains. In addition, P-gp levels in the blood-brain barrier (BBB) of resistant flies were higher than in susceptible and P-gp-deficient flies, which is further evidence that a high level of P-gp in the BBB is related to ABM resistance. Furthermore, we found greater expression of Drosophila EGFR (dEGFR) in the resistant strain than in the susceptible strain, and that the level of Drosophila Akt (dAkt) was much higher in resistant than in susceptible flies, whereas that in P-gp-deficient flies was very low. Compared to susceptible flies, P-gp levels in the resistant strain were markedly suppressed by the dEGFR and dAkt inhibitors lapatinib and wortmannin. These results suggest that the increased P-gp in resistant flies was regulated by the dEGFR and dAkt pathways and that increased expression of P-gp is an important component of ABM resistance in insects.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Barreira Hematoencefálica , Proteínas de Drosophila/fisiologia , Drosophila/genética , Receptores ErbB/fisiologia , Inseticidas , Ivermectina/análogos & derivados , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiologia , Drosophila/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Ivermectina/toxicidade , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
Development ; 139(24): 4524-35, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23172913

RESUMO

Inactivating mutations within adenomatous polyposis coli (APC), a negative regulator of Wnt signaling, are responsible for most sporadic and hereditary forms of colorectal cancer (CRC). Here, we use the adult Drosophila midgut as a model system to investigate the molecular events that mediate intestinal hyperplasia following loss of Apc in the intestine. Our results indicate that the conserved Wnt target Myc and its binding partner Max are required for the initiation and maintenance of intestinal stem cell (ISC) hyperproliferation following Apc1 loss. Importantly, we find that loss of Apc1 leads to the production of the interleukin-like ligands Upd2/3 and the EGF-like Spitz in a Myc-dependent manner. Loss of Apc1 or high Wg in ISCs results in non-cell-autonomous upregulation of upd3 in enterocytes and subsequent activation of Jak/Stat signaling in ISCs. Crucially, knocking down Jak/Stat or Spitz/Egfr signaling suppresses Apc1-dependent ISC hyperproliferation. In summary, our results uncover a novel non-cell-autonomous interplay between Wnt/Myc, Egfr and Jak/Stat signaling in the regulation of intestinal hyperproliferation. Furthermore, we present evidence suggesting potential conservation in mouse models and human CRC. Therefore, the Drosophila adult midgut proves to be a powerful genetic system to identify novel mediators of APC phenotypes in the intestine.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila , Receptores ErbB/fisiologia , Intestinos/patologia , Janus Quinases/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Fatores de Transcrição STAT/fisiologia , Fatores de Transcrição/fisiologia , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Células-Tronco Adultas/fisiologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Replicação do DNA/genética , Replicação do DNA/fisiologia , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Enterócitos/fisiologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Hiperplasia/genética , Mucosa Intestinal/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Receptor Cross-Talk/fisiologia , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Fly (Austin) ; 6(4): 234-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22878648

RESUMO

Dorsoventral (DV) axis formation in Drosophila begins during oogenesis through the graded activation of the EGF receptor (EGFR)-Ras-MAPK signaling pathway in the follicle cell layer of the egg chamber. EGFR signaling, which is higher in dorsal follicle cells, represses expression of the sulfotransferase-encoding gene pipe, thereby delimiting a ventral domain of Pipe activity that is critical for the subsequent induction of ventral embryonic fates. We have characterized the transcriptional circuit that links EGFR signaling to pipe repression: in dorsal follicle cells, the homeodomain transcription factor Mirror (Mirr), which is induced by EGFR signaling, directly represses pipe transcription, whereas in ventral follicle cells, the HMG-box protein Capicua (Cic) supports pipe expression by repressing mirr. Although Cic is under negative post-transcriptional regulation by Ras-MAPK signaling in different contexts, the relevance of this mechanism for the interpretation of the EGFR signal during DV pattern formation remains unclear. Here, we consider a model where EGFR-mediated downregulation of Cic modulates the spatial distribution of Mirr protein in lateral follicle cells, thereby contributing to define the position at which the pipe expression border is formed.


Assuntos
Padronização Corporal/genética , Regulação para Baixo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila/citologia , Receptores ErbB/fisiologia , Proteínas HMGB/genética , Receptores de Peptídeos de Invertebrados/fisiologia , Proteínas Repressoras/genética , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/metabolismo , Proteínas HMGB/fisiologia , Modelos Biológicos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Transdução de Sinais , Sulfotransferases/genética , Sulfotransferases/metabolismo
7.
Biochem Soc Trans ; 40(1): 184-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22260687

RESUMO

Current models suggest that ligand-binding heterogeneity in HER1 [human EGFR (epidermal growth factor receptor] arises from negative co-operativity in signalling HER1 dimers, for which the asymmetry of the extracellular region of the Drosophila EGFR has recently provided a structural basis. However, no asymmetry is apparent in the current crystal structure of the isolated extracellular region of HER1. This receptor also differs from the Drosophila EGFR in that negative co-operativity is found only in full-length receptors in cells. Structural insights into HER1 in epithelial cells, derived from FLIM (fluorescence lifetime imaging microscopy) and two-dimensional FRET (Förster resonance energy transfer) combined with Monte Carlo and molecular dynamics simulations, have demonstrated a high-affinity ligand-binding HER1 conformation consistent with the extracellular region aligned flat on the plasma membrane. This conformation shares key features with that of the Drosophila EGFR, suggesting that the structural basis for negative co-operativity is conserved from invertebrates to humans, but that, in HER1, the extracellular region asymmetry requires interactions with the plasma membrane.


Assuntos
Membrana Celular/fisiologia , Proteínas de Drosophila/fisiologia , Receptores ErbB/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Animais , Proteínas de Drosophila/química , Fator de Crescimento Epidérmico/química , Receptores ErbB/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Receptores de Peptídeos de Invertebrados/química , Transdução de Sinais
8.
Dev Neurobiol ; 72(9): 1229-42, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22021126

RESUMO

Synaptic target selection is critical for establishing functional neuronal circuits. The mechanisms regulating target selection remain incompletely understood. We describe a role for the EGF receptor and its ligand Gurken in target selection of octopaminergic Type II neurons in the Drosophila neuromuscular system. Mutants in happyhour, a regulator of EGFR signaling, form ectopic Type II neuromuscular junctions. These ectopic innervations are due to inappropriate target selection. We demonstrate that EGFR signaling is necessary and sufficient to inhibit synaptic target selection by these octopaminergic Type II neurons, and that the EGFR ligand Gurken is the postsynaptic, muscle-derived repulsive cue. These results identify a new pathway mediating cell-type and branch-specific synaptic repulsion, a novel role for EGFR signaling in synaptic target selection, and an unexpected role for Gurken as a muscle-secreted repulsive ligand.


Assuntos
Proteínas de Drosophila/fisiologia , Receptores ErbB/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Fator de Crescimento Transformador alfa/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fator de Crescimento Transformador alfa/metabolismo
9.
J Neurosci ; 30(44): 14724-34, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21048131

RESUMO

Neuropeptides are found in both mammals and invertebrates and can modulate neural function through activation of G-protein-coupled receptors (GPCRS). The precise mechanisms by which many of these GPCRs modulate specific signaling cascades to regulate neural function are not well defined. We used Drosophila melanogaster as a model to examine both the cellular and behavioral effects of DPKQDFMRFamide, the most abundant peptide encoded by the dFMRF gene. We show that DPKQDFMRFamide enhanced synaptic transmission through activation of two G-protein-coupled receptors, Fmrf Receptor (FR) and Dromyosupressin Receptor-2 (DmsR-2). The peptide increased both the presynaptic Ca(2+) response and the quantal content of released transmitter. Peptide-induced modulation of synaptic function could be abrogated by depleting intracellular Ca(2+) stores or by interfering with Ca(2+) release from the endoplasmic reticulum through disruption of either the ryanodine receptor or the inositol 1,4,5-trisphosphate receptor. The peptide also altered behavior. Exogenous DPKQDFMRFamide enhanced fictive locomotion; this required both the FR and DmsR-2. Likewise, both receptors were required for an escape response to intense light exposure. Thus, coincident detection of a peptide by two GPCRs modulates synaptic function through effects of Ca(2+)-induced Ca(2+) release, and we hypothesize that these mechanisms are involved in behavioral responses to environmental stress.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Reação de Fuga/fisiologia , FMRFamida/fisiologia , Hormônios de Inseto/metabolismo , Neuropeptídeos/metabolismo , Precursores de Proteínas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Peptídeos/fisiologia , Transmissão Sináptica/fisiologia , Animais , Comportamento Animal/fisiologia , Sinalização do Cálcio/fisiologia , Proteínas de Drosophila/agonistas , Feminino , Hormônios de Inseto/fisiologia , Masculino , Atividade Motora/fisiologia , Neuropeptídeos/fisiologia , Neurotransmissores/metabolismo , Neurotransmissores/fisiologia , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos de Invertebrados/agonistas , Receptores de Peptídeos de Invertebrados/fisiologia , Receptores de Peptídeos/agonistas , Estresse Fisiológico/fisiologia
10.
Biochem Biophys Res Commun ; 380(4): 729-35, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19250628

RESUMO

It is well established that CNS midline cells are essential for the identity determination, division, and differentiation of neurons and glia in the Drosophila CNS. However, it is not clear whether CNS midline cells control the establishment and differentiation of the well-known RP2 motoneuron lineage. The present study showed by using several RP2 lineage markers that CNS midline cells and Egfr signaling genes are required for identity determination and formation of precursors of the RP2 motoneurons. Overexpression and ectopic expression of sim and components of the EGFR signaling pathway in the ventral neuroectoderm induced the formation of extra RP2s and their sibling cells by activating EGFR signaling. We demonstrated that CNS midline cells and Egfr signaling genes play essential roles in the establishment of the RP2 motoneuron lineage.


Assuntos
Linhagem da Célula/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Receptores ErbB/fisiologia , Neurônios Motores/citologia , Receptores de Peptídeos de Invertebrados/fisiologia , Animais , Linhagem Celular , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Receptores ErbB/genética , Neurônios Motores/metabolismo , Receptores de Peptídeos de Invertebrados/genética , Transdução de Sinais/genética
11.
Development ; 136(3): 473-81, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19141676

RESUMO

Adhesion proteins not only control the degree to which cells adhere to each other but are increasingly recognised as regulators of intercellular signalling. Using genetic screening in Drosophila, we have identified Fasciclin 2 (Fas2), the Drosophila orthologue of neural cell adhesion molecule (NCAM), as a physiologically significant and specific inhibitor of epidermal growth factor receptor (EGFR) signalling in development. We find that loss of fas2 genetically interacts with multiple genetic conditions that perturb EGFR signalling. Fas2 is expressed in dynamic patterns during imaginal disc development, and in the eye we have shown that this depends on EGFR activity, implying participation in a negative-feedback loop. Loss of fas2 causes characteristic EGFR hyperactivity phenotypes in the eye, notum and wing, and also leads to downregulation of Yan, a transcriptional repressor targeted for degradation by EGFR activity. No significant genetic interactions were detected with the Notch, Wingless, Hedgehog or Dpp pathways, nor did Fas2 inhibit the FGF receptor or Torso, indicating specificity in the inhibitory role of Fas2 in EGFR signalling. Our results introduce a new regulatory interaction between an adhesion protein and a Drosophila signalling pathway and highlight the extent to which the EGFR pathway must be regulated at multiple levels.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Olho Composto de Artrópodes/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Receptores ErbB/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/genética , Olho Composto de Artrópodes/embriologia , Olho Composto de Artrópodes/crescimento & desenvolvimento , Regulação para Baixo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/genética , Proteínas do Olho/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Peptídeos de Invertebrados/genética , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Asas de Animais/embriologia , Asas de Animais/crescimento & desenvolvimento
12.
Development ; 136(3): 483-93, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19141677

RESUMO

In holometabolous insects, the adult appendages and internal organs form anew from larval progenitor cells during metamorphosis. As described here, the adult Drosophila midgut, including intestinal stem cells (ISCs), develops from adult midgut progenitor cells (AMPs) that proliferate during larval development in two phases. Dividing AMPs first disperse, but later proliferate within distinct islands, forming large cell clusters that eventually fuse during metamorphosis to make the adult midgut epithelium. We find that signaling through the EGFR/RAS/MAPK pathway is necessary and limiting for AMP proliferation. Midgut visceral muscle produces a weak EGFR ligand, Vein, which is required for early AMP proliferation. Two stronger EGFR ligands, Spitz and Keren, are expressed by the AMPs themselves and provide an additional, autocrine mitogenic stimulus to the AMPs during late larval stages.


Assuntos
Proliferação de Células , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Receptores ErbB/fisiologia , Mucosa Intestinal/citologia , Intestinos/citologia , Receptores de Peptídeos de Invertebrados/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Animais , Linhagem da Célula/fisiologia , Proteínas de Drosophila/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Intestinos/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Metamorfose Biológica , Neurregulinas/metabolismo , Ligação Proteica , Transdução de Sinais/fisiologia , Proteínas ras/fisiologia
13.
Development ; 135(16): 2787-96, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18635611

RESUMO

In Drosophila, Notch and Egfr signaling regulate the determination of many cell types, and yet how these common signals generate cell-specific transcription is not well understood. In the compound eye, prospero (pros) is transcribed specifically in R7 photoreceptors and cone cells. We show that the transcription of pros is activated by two visual-specific transcription selectors, Glass and Sine Oculis, that bind to an enhancer and promote its activation. Together with the pre-patterning transcription factor Lozenge, these factors work in a highly combinatorial manner, such that cells missing any one factor transcribe pros only weakly, if at all. However, the factors are not sufficient to activate the enhancer because of an additional requirement for both Notch and Egfr signals. The loss of Notch signaling produces a ;salt and pepper' effect, with some cells expressing near-normal levels and others expressing no detectable pros at all; thus, the signaling loss does not produce a uniformly reduced level of transcription activity in cells. This suggests a probabilistic mechanism, in which Notch signals influence the likelihood that the enhancer is inactive or fully active in any given cell. The activity level, therefore, is dictated by the proper combination of highly cooperative selector and pre-pattern factors present in the cell.


Assuntos
Olho Composto de Artrópodes/embriologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Olho Composto de Artrópodes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Receptores ErbB/fisiologia , Proteínas do Olho/fisiologia , Proteínas de Homeodomínio/fisiologia , Dados de Sequência Molecular , Células Fotorreceptoras de Invertebrados/embriologia , Células Fotorreceptoras de Invertebrados/metabolismo , Receptores de Peptídeos de Invertebrados/fisiologia , Receptores Notch/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica
14.
EMBO J ; 27(8): 1219-30, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18369317

RESUMO

We explore the role of differential compartmentalization of Rhomboid (Rho) proteases that process the Drosophila EGF receptor ligands, in modulating the amount of secreted ligand and consequently the level of EGF receptor (EGFR) activation. The mSpitz ligand precursor is retained in the ER, and is trafficked by the chaperone Star to a late compartment of the secretory pathway, where Rho-1 resides. This work demonstrates that two other Rho proteins, Rho-2 and Rho-3, which are expressed in the germ line and in the developing eye, respectively, cleave the Spitz precursor and Star already in the ER, in addition to their activity in the late compartment. This property attenuates EGFR activation, primarily by compromising the amount of chaperone that can productively traffic the ligand precursor to the late compartment, where cleavage and subsequent secretion take place. These observations identify changes in intracellular compartment localization of Rho proteins as a basis for signal attenuation, in tissues where EGFR activation must be highly restricted in space and time.


Assuntos
Compartimento Celular/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Receptores ErbB/fisiologia , Membranas Intracelulares/enzimologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Quinases/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/fisiologia , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster/embriologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/enzimologia , Fator de Crescimento Epidérmico/metabolismo , Proteínas do Olho/metabolismo , Proteínas do Olho/fisiologia , Células Germinativas/metabolismo , Hidrólise , Proteínas rho de Ligação ao GTP/fisiologia
16.
Development ; 134(23): 4273-82, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17978004

RESUMO

Invagination of organ placodes converts flat epithelia into three-dimensional organs. Cell tracing in the Drosophila tracheal placode revealed that, in the 30-minute period before invagination, cells enter mitotic quiescence and form short rows that encircle the future invagination site. The cells in the rows align to form a smooth boundary (;boundary smoothing'), accompanied by a transient increase in myosin at the boundary and cell intercalation oriented in parallel with the cellular rows. Cells then undergo apical constriction and invaginate, followed by radially oriented mitosis in the placode. Prior to invagination, ERK MAP kinase is activated in an outward circular wave, with the wave front often correlating with the smoothing cell boundaries. EGFR signaling is required for myosin accumulation and cell boundary smoothing, suggesting its propagation polarizes the planar cell rearrangement in the tracheal placode, and coordinates the timing and position of intrinsic cell internalization activities.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Receptores ErbB/fisiologia , Proteínas Quinases/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Traqueia/citologia , Traqueia/embriologia , Animais , Divisão Celular , Movimento Celular , Drosophila melanogaster/fisiologia , Ectoderma/citologia , Ectoderma/fisiologia , Embrião não Mamífero , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Genes Reporter , Mitose , Miosinas/metabolismo , Organogênese , Transdução de Sinais
17.
Development ; 133(16): 3115-25, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16831830

RESUMO

A fundamental requirement during organogenesis is to preserve tissue integrity to render a mature and functional structure. Many epithelial organs, such as the branched tubular structures, undergo a tremendous process of tissue remodelling to attain their final pattern. The cohesive properties of these tissues need to be finely regulated to promote adhesion yet allow flexibility during extensive tissue remodelling. Here, we report a new role for the Egfr pathway in maintaining epithelial integrity during tracheal development in Drosophila. We show that the integrity-promoting Egfr function is transduced by the ERK-type MAPK pathway, but does not require the downstream transcription factor Pointed. Compromising Egfr signalling, by downregulating different elements of the pathway or by overexpressing the Mkp3 negative regulator, leads to loss of tube integrity, whereas upregulation of the pathway results in increased tissue stiffness. We find that regulation of MAPK pathway activity by Breathless signalling does not impinge on tissue integrity. Egfr effects on tissue integrity correlate with differences in the accumulation of markers for cadherin-based cell-cell adhesion. Accordingly, downregulation of cadherin-based cell-cell adhesion gives rise to tracheal integrity defects. Our results suggest that the Egfr pathway regulates maintenance of tissue integrity, at least in part, through the modulation of cell adhesion. This finding establishes a link between a developmental pathway governing tracheal formation and cell adhesiveness.


Assuntos
Adesão Celular , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Receptores ErbB/fisiologia , Organogênese , Proteínas Quinases/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Traqueia/embriologia , Animais , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/genética , Regulação para Baixo , Drosophila/citologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fosfatase 6 de Especificidade Dupla , Epitélio/embriologia , Receptores ErbB/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Organogênese/genética , Fenótipo , Proteínas Quinases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Peptídeos de Invertebrados/genética , Transdução de Sinais , Transcrição Gênica
18.
Dev Biol ; 296(2): 340-52, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16815386

RESUMO

In Drosophila, wings and halteres are the dorsal appendages of the second and third thoracic segments, respectively. In the third thoracic segment, homeotic selector gene Ultrabithorax (Ubx) suppresses wing development to mediate haltere development (E.B. Lewis, 1978. A gene complex controlling segmentation in Drosophila. Nature 276, 565-570). Halteres lack stout sensory bristles of the wing margin and veins that reticulate the wing blade. Furthermore, wing and haltere epithelia differ in the size, shape, spacing and number of cuticular hairs. The differential development of wing and haltere, thus, constitutes a good genetic system to study cell fate determination. Here, we report that down-regulation of Egfr/Ras pathway is critical for haltere fate specification: over-expression of positive components of this pathway causes significant haltere-to-wing transformations. RNA in situ, immunohistochemistry, and epistasis genetic experiments suggest that Ubx negatively regulates the expression of the ligand vein as well as the receptor Egf-r to down-regulate the signaling pathway. Electromobility shift assays further suggest that Egf-r is a potential direct target of Ubx. These results and other recent findings suggest that homeotic genes may regulate cell fate determination by directly regulating few steps at the top of the hierarchy of selected signal transduction pathways.


Assuntos
Regulação para Baixo/fisiologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/fisiologia , Drosophila/genética , Receptores ErbB/antagonistas & inibidores , Proteínas de Homeodomínio/fisiologia , Receptores de Peptídeos de Invertebrados/antagonistas & inibidores , Transdução de Sinais/fisiologia , Tórax/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Proteínas ras/antagonistas & inibidores , Animais , Regulação para Baixo/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Receptores ErbB/biossíntese , Receptores ErbB/genética , Receptores ErbB/fisiologia , Proteínas de Homeodomínio/genética , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Receptores de Peptídeos de Invertebrados/biossíntese , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/fisiologia , Transdução de Sinais/genética , Tórax/anormalidades , Tórax/embriologia , Fatores de Transcrição/genética , Asas de Animais/anormalidades , Asas de Animais/embriologia , Asas de Animais/crescimento & desenvolvimento , Proteínas ras/biossíntese , Proteínas ras/genética , Proteínas ras/fisiologia
19.
EMBO J ; 25(13): 3191-202, 2006 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-16763555

RESUMO

The corepressor complex that includes Ebi and SMRTER is a target of epidermal growth factor (EGF) and Notch signaling pathways and regulates Delta (Dl)-mediated induction of support cells adjacent to photoreceptor neurons of the Drosophila eye. We describe a mechanism by which the Ebi/SMRTER corepressor complex maintains Dl expression. We identified a gene, charlatan (chn), which encodes a C2H2-type zinc-finger protein resembling human neuronal restricted silencing factor/repressor element RE-1 silencing transcription factor (NRSF/REST). The Ebi/SMRTER corepressor complex represses chn transcription by competing with the activation complex that includes the Notch intracellular domain (NICD). Chn represses Dl expression and is critical for the initiation of eye development. Thus, under EGF signaling, double negative regulation mediated by the Ebi/SMRTER corepressor complex and an NRSF/REST-like factor, Chn, maintains inductive activity in developing photoreceptor cells by promoting Dl expression.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Proteínas de Membrana/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Correpressoras , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Receptores ErbB/fisiologia , Olho/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Proteínas Quinases/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Dedos de Zinco
20.
Dev Biol ; 296(1): 94-103, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16712835

RESUMO

Cell migration is an important feature of embryonic development as well as tumor metastasis. Border cells in the Drosophila ovary have emerged as a useful in vivo model for uncovering the molecular mechanisms that control many aspects of cell migration including guidance. It was previously shown that two receptor tyrosine kinases, epidermal growth factor receptor (EGFR) and PDGF- and VEGF-related receptor (PVR), together contribute to border cell migration. Whereas the ligand for PVR, PVF1, is known to guide border cells, it is unclear which of the four activating EGFR ligands function in this process. We developed an assay to detect the ability of secreted factors to reroute migrating border cells in vivo and tested the activity of EGFR ligands compared to PVF1. Two ligands, Keren and Spitz, guided border cells whereas the other ligands, Gurken and Vein, did not. In addition, only Keren and Spitz were expressed at the appropriate stage in the oocyte, the target of border cell migration. Therefore, a complex combination of EGFR and PVR ligands together guide border cells to the oocyte.


Assuntos
Movimento Celular/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Receptores ErbB/fisiologia , Ovário/fisiologia , Proteínas Quinases/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Animais , Proteínas de Drosophila/agonistas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Proteínas do Ovo/metabolismo , Proteínas do Ovo/fisiologia , Fator de Crescimento Epidérmico/fisiologia , Receptores ErbB/agonistas , Feminino , Ligantes , Proteínas de Membrana/fisiologia , Neurregulinas/fisiologia , Ovário/citologia , Receptores de Peptídeos de Invertebrados/agonistas , Fator de Crescimento Transformador alfa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...